# Generators of Jacobian Groups of Graphs 

Aurash Vatan<br>Mentor: Xiaomeng Xu

May 19-20, 2018
MIT PRIMES Conference

## What are Graphs?

## Definition (Graph)

A graph $G$ is an ordered pair $(V, E)$ where $V$ is a set of vertices and $E$ is a collection of two-element subsets of $V$ with repetition allowed.

## What are Graphs?

## Definition (Graph)

A graph $G$ is an ordered pair $(V, E)$ where $V$ is a set of vertices and $E$ is a collection of two-element subsets of $V$ with repetition allowed.
Connected graph:


Unconnected graph:


## What are Graphs?

## Definition (Graph)

A graph $G$ is an ordered pair $(V, E)$ where $V$ is a set of vertices and $E$ is a collection of two-element subsets of $V$ with repetition allowed.
Connected graph:


Unconnected graph:


Graph with loops:
๑-

## Motivation

(1) To study geometric objects, useful to assign algebraic structures to them
(2) Eg. symmetry groups of shapes, groups on elliptic curves, etc.
(3) Inspired by that, we do the same for graphs

## Motivation

(1) To study geometric objects, useful to assign algebraic structures to them
(2) Eg. symmetry groups of shapes, groups on elliptic curves, etc.
(3) Inspired by that, we do the same for graphs
(1) The elements of these groups will be called divisors

## Divisors

## Definition (Divisor)

A divisor $D$ of a graph $G$ is an assignment of integers $D\left(v_{i}\right)$ to its vertices $v_{i}$.

## Divisors

## Definition (Divisor)

A divisor $D$ of a graph $G$ is an assignment of integers $D\left(v_{i}\right)$ to its vertices $v_{i}$.

Here are some examples:
$D_{1}(G)=3 v_{0}+0 v_{1}+5 v_{2}+4 v_{3}+2 v_{4}:$


## Divisors

## Definition (Divisor)

A divisor $D$ of a graph $G$ is an assignment of integers $D\left(v_{i}\right)$ to its vertices $v_{i}$.

Here are some examples:
$D_{1}(G)=3 v_{0}+0 v_{1}+5 v_{2}+4 v_{3}+2 v_{4}: \quad D_{2}(G)=-3 v_{0}+0 v_{1}+5 v_{2}-5 v_{3}+1 v_{4}:$



## Divisors

## Definition (Divisor)

A divisor $D$ of a graph $G$ is an assignment of integers $D\left(v_{i}\right)$ to its vertices $v_{i}$.

Here are some examples:
$D_{1}(G)=3 v_{0}+0 v_{1}+5 v_{2}+4 v_{3}+2 v_{4}: \quad D_{2}(G)=-3 v_{0}+0 v_{1}+5 v_{2}-5 v_{3}+1 v_{4}:$


We can add the divisors as follows:

$$
D_{1}+D_{2}=0 v_{0}+0 v_{1}+10 v_{2}-1 v_{3}+3 v_{4}
$$

## Divisors

## Theorem

The set of divisors of a graph $G$ form an Abelian group $\operatorname{Div}(G)$ under this operation.

There is an identity, inverses exist, the operation is closed, associative, and commutative.

## Divisors

## Theorem

The set of divisors of a graph $G$ form an Abelian $\operatorname{group} \operatorname{Div}(G)$ under this operation.

There is an identity, inverses exist, the operation is closed, associative, and commutative.

## Definition

The degree of a divisor $D$ is the sum $\sum_{i} D\left(v_{i}\right)$.

## Divisors

## Theorem

The set of divisors of a graph $G$ form an Abelian $\operatorname{group} \operatorname{Div}(G)$ under this operation.

There is an identity, inverses exist, the operation is closed, associative, and commutative.

## Definition

The degree of a divisor $D$ is the sum $\sum_{i} D\left(v_{i}\right)$.

## Theorem

The set of divisors with degree 0 form a subgroup $\operatorname{Div}_{0}(G)$ of $\operatorname{Div}(G)$.
Sum of degree zero divisors must have degree zero. Inverses of degree zero divisors must have degree zero.

## Chip Firing

- Think of a divisor as assigning a number of "chips" to each node
- When a node "fires," it sends one chip along each edge
- Note that this operation preserves the degree of the divisor

Example:


## Chip Firing

- Think of a divisor as assigning a number of "chips" to each node
- When a node "fires," it sends one chip along each edge
- Note that this operation preserves the degree of the divisor Example:



## Chip Firing

- Think of a divisor as assigning a number of "chips" to each node
- When a node "fires," it sends one chip along each edge
- Note that this operation preserves the degree of the divisor Example:



## Definition (Firing Script)

A firing script $\sigma$ is an integer vector $\sigma \in \mathbb{Z}^{n}$ whose entries specify the number of times each node of a divisor should be fired.

## Chip Firing as an Equivalence Relation

## Definition

Let $A$ and $B$ be divisors on a graph $G$. Then $A \sim B$ if and only if there exists a firing script $\sigma$ that takes $A$ to $B$.

## Chip Firing as an Equivalence Relation

## Definition

Let $A$ and $B$ be divisors on a graph $G$. Then $A \sim B$ if and only if there exists a firing script $\sigma$ that takes $A$ to $B$.
(1) For a graph $G$, the set $\operatorname{Prin}(G)$ of all divisors equivalent to 0 is a subgroup of $\operatorname{Div}(G)$.

## Chip Firing as an Equivalence Relation

## Definition

Let $A$ and $B$ be divisors on a graph $G$. Then $A \sim B$ if and only if there exists a firing script $\sigma$ that takes $A$ to $B$.
(1) For a graph $G$, the set $\operatorname{Prin}(G)$ of all divisors equivalent to 0 is a subgroup of $\operatorname{Div}(G)$.
(2) It follows that $\operatorname{Prin}(G)$ is a subgroup of $\operatorname{Div}_{0}(G)$.

## Chip Firing as an Equivalence Relation

## Definition

Let $A$ and $B$ be divisors on a graph $G$. Then $A \sim B$ if and only if there exists a firing script $\sigma$ that takes $A$ to $B$.
(1) For a graph $G$, the set $\operatorname{Prin}(G)$ of all divisors equivalent to 0 is a subgroup of $\operatorname{Div}(G)$.
(2) It follows that $\operatorname{Prin}(G)$ is a subgroup of $\operatorname{Div}_{0}(G)$.

## Definition (Jacobian Group)

Let $G$ be a graph. The Jacobian $\operatorname{group} \operatorname{Jac}(G)$ is defined as $\operatorname{Div}_{0}(G) / \operatorname{Prin}(G)$.

## Examples of Jacobians

(1) The linear graph $L_{n}$ has a trivial Jacobian.


## Examples of Jacobians

(1) The linear graph $L_{n}$ has a trivial Jacobian.
(2) The cyclic graph $C_{n}$ has $\operatorname{Jac}\left(\mathrm{K}_{\mathrm{n}}\right)=\mathbb{Z}_{n}$


## Examples of Jacobians

(1) The linear graph $L_{n}$ has a trivial Jacobian.
(2) The cyclic graph $C_{n}$ has $\operatorname{Jac}\left(\mathrm{K}_{\mathrm{n}}\right)=\mathbb{Z}_{n}$
(3) The complete graph $K_{n}$ has $\operatorname{Jac}\left(\mathrm{K}_{\mathrm{n}}\right)=\mathbb{Z}_{n}^{n-2}$

## The Laplacian

## Definition

Let $G$ be a graph. Let $\Delta$ be a diagonal matrix where $\Delta_{(i, i)}$ equals the number of edges incident to vertex $i$. Let $A$ be the adjacency matrix of $G$. Then the Laplacian $L:=\Delta-A$.
(1) Properties of the Jacobian can be derived from the Laplacian, and so it is key to computation and proofs.

## The Laplacian

## Definition

Let $G$ be a graph. Let $\Delta$ be a diagonal matrix where $\Delta_{(i, i)}$ equals the number of edges incident to vertex $i$. Let $A$ be the adjacency matrix of $G$. Then the Laplacian $L:=\Delta-A$.
(1) Properties of the Jacobian can be derived from the Laplacian, and so it is key to computation and proofs.
(2) If we take the zero-divisor and fire the nodes by $\sigma$, the resulting divisor is $D=L \sigma$.

## The Laplacian

## Definition

Let $G$ be a graph. Let $\Delta$ be a diagonal matrix where $\Delta_{(i, i)}$ equals the number of edges incident to vertex $i$. Let $A$ be the adjacency matrix of $G$. Then the Laplacian $L:=\Delta-A$.
(1) Properties of the Jacobian can be derived from the Laplacian, and so it is key to computation and proofs.
(2) If we take the zero-divisor and fire the nodes by $\sigma$, the resulting divisor is $D=L \sigma$.
(3) $\operatorname{det}(L)=|\operatorname{Jac}(G)|$.

## The Laplacian

## Definition

Let $G$ be a graph. Let $\Delta$ be a diagonal matrix where $\Delta_{(i, i)}$ equals the number of edges incident to vertex $i$. Let $A$ be the adjacency matrix of $G$. Then the Laplacian $L:=\Delta-A$.
(1) Properties of the Jacobian can be derived from the Laplacian, and so it is key to computation and proofs.
(2) If we take the zero-divisor and fire the nodes by $\sigma$, the resulting divisor is $D=L \sigma$.
(3) $\operatorname{det}(L)=|\operatorname{Jac}(G)|$.
(9) The entries of the SNF of the Laplacian are the invariants of $\operatorname{Jac}(\mathrm{G})$.

## Previous Results

(1) We want to relate properties of $G$ to properties of $\operatorname{Jac}(G)$

## Previous Results

(1) We want to relate properties of $G$ to properties of $\operatorname{Jac}(G)$
(2) Lorenzini determined effect of adding or removing an edge of $G$ on the size of its minimal generating sets

## Theorem (Lorenzini 1989)

Let $G$ be a connected graph. Let $G^{\prime}$ be a connected graph formed by removing an edge of $G$. Then the size of the minimal generating set of $\operatorname{Jac}\left(G^{\prime}\right)$ differs from that of $\operatorname{Jac}(G)$ by at most 1 .

## Previous Results

(1) Lorenzini does not provide a method for finding generators

## Previous Results

(1) Lorenzini does not provide a method for finding generators
(2) Natural to start with simplest non-trivial divisors, $\delta_{x y}$

## Previous Results

(1) Lorenzini does not provide a method for finding generators
(2) Natural to start with simplest non-trivial divisors, $\delta_{x y}$

## Definition ( $\delta_{x y}$ divisors)

The $\delta_{x y}$ divisor is $D\left(v_{x}\right)=1, D\left(v_{y}\right)=-1$, and $D\left(v_{i}\right)=0$ for all $i \neq 1,-1$.

## Previous Results

(1) Lorenzini does not provide a method for finding generators
(2) Natural to start with simplest non-trivial divisors, $\delta_{x y}$

## Definition ( $\delta_{x y}$ divisors)

The $\delta_{x y}$ divisor is $D\left(v_{x}\right)=1, D\left(v_{y}\right)=-1$, and $D\left(v_{i}\right)=0$ for all $i \neq 1,-1$.

## Theorem (Brandfonbrener et. al. 2017)

Let $G$ be a graph and $G_{1}$ be a connected graph formed by adding/removing the edge between $x$ and $y$. The divisor $\delta_{x y}$ is a generator of $\operatorname{Jac}(G)$ if and only if

$$
\operatorname{gcd}\left(|\operatorname{Jac}(G)|,\left|\operatorname{Jac}\left(G_{1}\right)\right|\right)=1
$$

## Previous Results

## Theorem (Brandfonbrener et. al. 2017)

Let $G$ be a graph and $G_{1}$ be a connected graph formed by adding/removing the edge between $x$ and $y$. The divisor $\delta_{x y}$ is a generator of $\operatorname{Jac}(G)$ if and only if

$$
\operatorname{gcd}\left(|\operatorname{Jac}(G)|,\left|\operatorname{Jac}\left(G_{1}\right)\right|\right)=1
$$



## New Procedure

(1) One ultimate goal is to produce minimal generating sets of divisors

## New Procedure

(1) One ultimate goal is to produce minimal generating sets of divisors
(2) Working with $\delta$-divisors is a place to start

## New Procedure

(1) One ultimate goal is to produce minimal generating sets of divisors
(2) Working with $\delta$-divisors is a place to start
(3) We developed a procedure which we conjecture produces a smallest generating set consisting of only $\delta$-divisors

## New Procedure

(1) Choose a $\delta_{x_{1} y_{1}}$ that generates a largest subgroup of $\operatorname{Jac}(G)$

## New Procedure

(1) Choose a $\delta_{x_{1} y_{1}}$ that generates a largest subgroup of $\operatorname{Jac}(G)$
(2) If $x$ and $y$ are connected, remove edge $x y$ to form $G_{1}$. Otherwise, add edge $x y$

## New Procedure

(1) Choose a $\delta_{x_{1} y_{1}}$ that generates a largest subgroup of $\mathrm{Jac}(G)$
(2) If $x$ and $y$ are connected, remove edge $x y$ to form $G_{1}$. Otherwise, add edge $x y$
(3) Choose a $\delta_{x_{2} y_{2}}$ that generates a largest subgroup of $\operatorname{Jac}\left(G_{1}\right)$

## New Procedure

(1) Choose a $\delta_{x_{1} y_{1}}$ that generates a largest subgroup of $\operatorname{Jac}(G)$
(2) If $x$ and $y$ are connected, remove edge $x y$ to form $G_{1}$. Otherwise, add edge $x y$
(3) Choose a $\delta_{x_{2} y_{2}}$ that generates a largest subgroup of $\operatorname{Jac}\left(G_{1}\right)$
(9) If $x$ and $y$ are connected, remove edge $x y$ to form $G_{2}$. Otherwise, add edge $x y$

## New Procedure

(1) Choose a $\delta_{x_{1} y_{1}}$ that generates a largest subgroup of $\operatorname{Jac}(G)$
(2) If $x$ and $y$ are connected, remove edge $x y$ to form $G_{1}$. Otherwise, add edge $x y$
(3) Choose a $\delta_{x_{2} y_{2}}$ that generates a largest subgroup of $\operatorname{Jac}\left(G_{1}\right)$
(9) If $x$ and $y$ are connected, remove edge $x y$ to form $G_{2}$. Otherwise, add edge $x y$
(5) Repeat until $\left\langle\delta_{x_{n} y_{n}}\right\rangle=\operatorname{Jac}\left(G_{n-1}\right)$

## New Procedure

(1) Choose a $\delta_{x_{1} y_{1}}$ that generates a largest subgroup of $\operatorname{Jac}(G)$
(2) If $x$ and $y$ are connected, remove edge $x y$ to form $G_{1}$. Otherwise, add edge $x y$
(3) Choose a $\delta_{x_{2} y_{2}}$ that generates a largest subgroup of $\operatorname{Jac}\left(G_{1}\right)$
(9) If $x$ and $y$ are connected, remove edge $x y$ to form $G_{2}$. Otherwise, add edge $x y$
(5) Repeat until $\left\langle\delta_{x_{n} y_{n}}\right\rangle=\operatorname{Jac}\left(G_{n-1}\right)$

## Conjecture

If the above procedure terminates, then $\left\langle\delta_{x_{1} y_{1}}, \ldots, \delta_{x_{n} y_{n}}\right\rangle=\operatorname{Jac}(G)$.

## New Procedure Example

(1) $|\operatorname{Jac}(G)|=9$. The largest subgroups generated by a $\delta_{x y}$ have order 3. Set $\delta_{x y 1}$ equal to one such divisor, for example $\delta_{01}$.

## New Procedure Example

(1) $|\operatorname{Jac}(G)|=9$. The largest subgroups generated by a $\delta_{x y}$ have order 3. Set $\delta_{x y 1}$ equal to one such divisor, for example $\delta_{01}$.
(2) G contains a 0-1 edge, so remove it to form $G_{1}$.

## New Procedure Example

(1) $|\operatorname{Jac}(G)|=9$. The largest subgroups generated by a $\delta_{x y}$ have order 3. Set $\delta_{x y 1}$ equal to one such divisor, for example $\delta_{01}$.
(2) $G$ contains a $0-1$ edge, so remove it to form $G_{1}$.
(3) $\left|\operatorname{Jac}\left(G_{1}\right)\right|=3$. The largest subgroups generated by a $\delta_{x y}$ have order 3. Set $\delta_{x y 2}$ equal to one such divisor, for example $\delta_{45}$.

## New Procedure Example


(1) $|\operatorname{Jac}(G)|=9$. The largest subgroups generated by a $\delta_{x y}$ have order 3. Set $\delta_{x y 1}$ equal to one such divisor, for example $\delta_{01}$.
(2) $G$ contains a $0-1$ edge, so remove it to form $G_{1}$.
(3) $\left|\operatorname{Jac}\left(G_{1}\right)\right|=3$. The largest subgroups generated by a $\delta_{x y}$ have order 3. Set $\delta_{x y 2}$ equal to one such divisor, for example $\delta_{45}$.
(9) $|\operatorname{Jac}(G 1)|=\mid\left\langle\delta_{45} \mid\right\rangle$, so the process terminates.

## New Procedure Example



## Example

Computationally, we can check that $\left\langle\delta_{01}, \delta_{45}\right\rangle=\operatorname{Jac}(G)$.
(1) $|\operatorname{Jac}(G)|=9$. The largest subgroups generated by a $\delta_{x y}$ have order 3. Set $\delta_{x y 1}$ equal to one such divisor, for example $\delta_{01}$.
(2) G contains a 0-1 edge, so remove it to form $G_{1}$.
(3) $\left|\operatorname{Jac}\left(G_{1}\right)\right|=3$. The largest subgroups generated by a $\delta_{x y}$ have order 3. Set $\delta_{x y 2}$ equal to one such divisor, for example $\delta_{45}$.
(9) $|\operatorname{Jac}(G 1)|=\mid\left\langle\delta_{45} \mid\right\rangle$, so the process terminates.

## Computational Support

(1) Wrote software to apply procedure to randomly generated graphs.
(2) About 1000 across graphs of $4-10$ nodes.
(3) In 99 percent of trials, the process terminated.
(9) All terminated trials resulted in a generating set for the original graph.

## Future Research

(1) Prove that when the procedure terminates, it produces a generating set for the Jacobian of the original graph.
(2) With what probability does the procedure terminate?
(3) With what probability does it produce a generating set with minimal order

## Acknowledgements

I'd like to thank
(1) My mentor, Dr. Xiaomeng Xu
(2) Dr. Dhruv Ranganathan
(3) The PRIMES program and MIT Math Department
(9) Dr. Tanya Khovanova
(5) My parents

